Inducible Antibacterial Defense System in C. elegans
نویسندگان
چکیده
The term innate immunity refers to a number of evolutionary ancient mechanisms that serve to defend animals and plants against infection. Genetically tractable model organisms, especially Drosophila, have contributed greatly to advances in our understanding of mammalian innate immunity. Essentially, nothing is known about immune responses in the nematode Caenorhabditis elegans. Using high-density cDNA microarrays, we show here that infection of C. elegans by the Gram-negative bacterium Serratia marcescens provokes a marked upregulation of the expression of many genes. Among the most robustly induced are genes encoding lectins and lysozymes, known to be involved in immune responses in other organisms. Certain infection-inducible genes are under the control of the DBL-1/TGFbeta pathway. We found that dbl-1 mutants exhibit increased susceptibility to infection. Conversely, overexpression of the lysozyme gene lys-1 augments the resistance of C. elegans to S. marcescens. These results constitute the first demonstration of inducible antibacterial defenses in C. elegans and open new avenues for the investigation of evolutionary conserved mechanisms of innate immunity.
منابع مشابه
EGL-9 Controls C. elegans Host Defense Specificity through Prolyl Hydroxylation-Dependent and -Independent HIF-1 Pathways
Understanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bac...
متن کاملInvestigation of antibacterial activities of sponge Axinella sinoxea’s extracts from Larak Island, Persian Gulf
Sponges are the most primitive and simplest multicellular animals. These organisms don’t have any mechanical defense system, so their early appearance in evolution has given them a lot of time for the development of advanced secondary metabolites as chemical defense system. Sponges have the potential to provide drugs from chemical components against diseases, such as antibacterial. Antimicrobia...
متن کاملA Reverse Genetic Analysis of Components of the Toll Signaling Pathway in Caenorhabditis elegans
BACKGROUND Both animals and plants respond rapidly to pathogens by inducing the expression of defense-related genes. Whether such an inducible system of innate immunity is present in the model nematode Caenorhabditis elegans is currently an open question. Among conserved signaling pathways important for innate immunity, the Toll pathway is the best characterized. In Drosophila, this pathway als...
متن کاملInduction of ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptides by bacterial injection: novel members of ASABF in the nematode Ascaris suum.
Recently, invertebrate models have been widely used for the study of innate immunity. Nematodes are novel potential candidates because of the experimental advantages of Caenorhabditis elegans. However, whether nematodes have active immune responses is still ambiguous. Previously, we reported ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptides in the parasitic nematode Ascaris ...
متن کاملThe CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes.
Pharyngitis caused by Streptococcus pyogenes is one of the most common bacterial infections in humans and is also a starting point for invasive S. pyogenes infection. Here, we describe that tonsil fluid from patients with streptococcal pharyngitis contains high amounts of the interferon (IFN)-dependent CXC chemokine known as monokine induced by IFN- gamma (MIG)/CXCL9. Also in vitro, inflamed ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002